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Abstract 

This paper explores pre-service mathematics teachers’ understanding of the proof process 

at the elementary, middle, and high school levels.  The concept of what constitutes proof and 

justification at the K-12 level were examined in a college geometry course designed for future 

elementary school, middle school, and high school teachers.  Although a variety of geometry 

theorems were discussed in the course, this paper focuses on the Pythagorean Theorem and its 

converse.  Students developed methods to help elementary, middle, or high school students 

further their understanding and justification of the Pythagorean Theorem and its converse. 

Introduction 

 Proof is considered an important instrument in the mathematics learning process (Knuth, 

2002) as it provides a foundation for meaningful learning.  Tall and Mejia-Ramos (2006) noted 

that proof demonstrates the correctness or incorrectness of mathematics statements and is used in 

constructing mathematical knowledge.  The Reasoning and Proof Standard outlined by the 

National Council of Teachers of Mathematics (NCTM) in Principles and Standards for School 

Mathematics (2000) is considered one of the most fundamental aspects of mathematics (NCTM, 

2000).  NCTM (2000) indicates that proof is an important component of mathematics teaching 

for every age group.  It is thus important to provide opportunities for both K-12 students and 

college-level students that will build their reasoning skills and aid in their understanding of the 

proof process.  Students should be able to test mathematical arguments using direct and indirect 

reasoning, provide counterexamples to show a mathematical statement is incorrect, and express 
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mathematical expressions using symbolic language (Aylar, 2014).  The function of proof has 

been addressed by many authors (e.g., de Villiers, 1999; Hanna, 1990, 2001; Hersh, 1993) and 

their work suggests there are various roles proof plays, including: (1) to verify that a statement is 

true, (2) to explain why a statement is true, (3) to communicate mathematical knowledge, (4) to 

discover or create new mathematics, or (5) to systematize statements into an axiomatic system.  

These roles suggest that the concept of proof or justification encompasses convincing, 

explaining, and understanding (Huang, 2005). 

 The notion of proof or justification is quite different at the elementary school, middle 

school, and high school levels.  As noted by Jones (1997), in the early grade levels students can 

be taught to recognize simple patterns and make predictions about them, and ask questions such 

as, “What would happen if …?”.  Justification of mathematical statements in the early grades 

may constitute nothing more than mathematical verification.  At the middle school level, 

students make conjectures, make and test generalizations, and learn the difference between 

mathematical explanation and experimental evidence (Jones, 1997).  According to the Common 

Core State Standards for School Mathematics (CCSSI, 2010), by the time students complete the 

eighth grade they should be able to explain a proof of the Pythagorean Theorem and its converse.  

In high school, students are expected to extend their mathematical reasoning into understanding 

and use more rigorous arguments, leading to notions of proof (Jones, 1997).  High school 

students should begin to formalize their geometry experiences from elementary and middle 

school, using more precise definitions and developing careful proofs (CCSSI, 2010).  If students 

in K-12 education are expected to prove or justify mathematical statements, pre-service teachers 

should have an understanding of what constitutes proof at the elementary school level, middle 

school level, and high school level. 
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Although college-level mathematics students may have many experiences testing and 

justifying mathematical statements, those who are pre-service teachers may not have experiences 

that allow them to learn what constitutes proof at the elementary school level, middle school 

level, and high school level.  Providing an opportunity for pre-service mathematics teachers to 

explore what it means to prove and justify mathematical statements at the various levels was the 

motivation for this research.  This paper explores pre-service mathematics teachers’ 

understanding of the proof process at the elementary, middle, and high school levels. 

Method 

The concept of what constitutes proof and justification at the K-12 level were examined 

in a one-semester college geometry course designed for future elementary school (grades K-5), 

middle school (grades 6-8), and high school (grades 9-12) teachers.  The study took place at a 

medium-size public university located in the Upper Midwest region of the United States.  There 

were 18 students in the course; 9 majoring in secondary mathematics education, 6 majoring in 

elementary mathematics education, and 3 non-teaching mathematics majors.  Students were 

divided into three groups of six students each by the instructor according to the students’ interest 

in teaching elementary school, middle school, high school, or desiring a non-teaching career.  

Two of the secondary mathematics education majors expressed interest in teaching middle 

school and one elementary mathematics education major expressed interest in teaching middle 

school.  So, each of the three groups had one student with an interest in teaching at the middle 

school level.  Each group also had one non-teaching mathematics major.  Table 1 shows the 

breakdown of the groups according to interest in the K-12 level they wanted to teach or based on 

no interest in teaching at the K-12 level. 
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 Elementary School Middle School High School Non-Teaching 

Group 1 2 1 2 1 

Group 2 1 1 3 1 

Group 3 2 1 2 1 

Table 1. Breakdown of groups of students based on teaching interest. 

 

Although many geometry theorems were discussed throughout the semester, for this 

study the students were asked to focus on proof and justification of the Pythagorean Theorem 

and its converse.  This theorem was chosen because it is a commonly used theorem at the middle 

school and high school levels, and the students in the course were very familiar with this 

theorem.  As preparation for exploring proof at the various levels, students completed an 

assignment in which they had to provide a visual proof of the Pythagorean Theorem with 

explanation, such an algebraic proof.  The goal of the assignment used in this study was for 

students to develop activities that would aid in understanding the Pythagorean Theorem and its 

converse in elementary school, middle school, and high school levels.  Students did not have 

prior experience in working with the converse of the Pythagorean Theorem. 

Each group decided to break into two-person teams in which each team focused on a 

particular level.  In group 1, the non-teaching mathematics major teamed up with the student 

interested in teaching middle school.  In group 2, the non-teaching mathematics major teamed up 

with the student interested in teaching elementary school while one of the students interested in 

teaching high school teamed up with a student interested in teaching middle school.  In group 3, 

the non-teaching mathematics major teamed up with a student interested in teaching high school 

and a student interested in teaching high school teamed up with a student interested in teaching 

middle school.  This allowed the two-person teams within each of the three groups to focus on 

one K-12 level. 
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Students were given three class periods to work in their groups to research and develop 

ideas for the activities and then two class periods were devoted to presentation of the activities.  

Students also worked outside of class on the assignment.  The total time given for students to 

develop the activities prior to presentation was 10 days.  The groups were required to submit a 

document describing the activity that the K-12 students would be doing at each level making 

sure that the activities addressed the following questions. 

 What does it mean to prove or justify the Pythagorean Theorem at each level?   

 What about the converse of the Pythagorean Theorem?  How can you help students 

understand the Pythagorean Theorem and its converse? 

 If c is the longest side of a triangle, what relationships hold when comparing c2 to a2 + 

b2?  What type of triangles do we get? 

 What do you expect students to get from doing the activity? 

Students received a group grade, but because each team provided a write-up based on the 

level they researched, revisions to the assignment were allowed based on feedback from the 

instructor.  The instructor initially provided comments with no score, then after students revised 

their document, a score with additional comments was given and students were allowed to revise 

their document one last time before a final score for the assignment was recorded. 

Results 

 The approaches the students took to proving or justifying the Pythagorean Theorem and 

its converse are discussed in the paragraphs that follow according to each K-12 level: Elementary 

School, Middle School, and High School.  In each case, a description of the activities the groups 

developed are provided. 
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Elementary School 

There was not much variation in the activities developed by the elementary-school-level 

teams possibly because at the elementary level students do not formally prove the Pythagorean 

Theorem.  Elementary school students identify the differences between an acute triangle, an 

obtuse triangle, and a right triangle.  One way of identifying these differences is by using the 

squared lengths of the sides of the triangles.  Thus, the activities developed by all three teams 

focused on having students do calculations with specific lengths of sides of triangles given to 

them.  The activity involved providing students with an acute triangle, an obtuse triangle, and a 

right triangle.  One of the teams had students cutting and maneuvering one-inch squares from 

grid paper to fit into squares off each side of the three triangles while the other two teams had 

students maneuvering Starbursts© candy to fit into squares off each side of the three triangles 

(Keller, 2011).  Table 2 shows an example of an obtuse triangle using the one-inch squares and 

examples of an acute triangle and a right triangle using Starbursts© candy. 
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Obtuse Triangle 

using One-inch 

Squares 

 

 

 

 

 

Acute Triangle 

using 

Starbursts© 

Candy 

 

 

 

 

 

 

Right Triangle 

using 

Starbursts© 

Candy 

  

Table 2. Elementary school examples of justifying the Pythagorean Theorem and its converse. 

 

At the elementary level, students will discover that the sum of the areas of the squares 

constructed off of the shorter sides is equal to the area of the square constructed off of the longest 

side only in the case of a right triangle. Examples and manipulatives are used to justify the 

Pythagorean Theorem. Students will be able to generalize that the sum of the areas of the squares 

constructed off of the shorter sides of the triangle will equal the area of the square constructed 
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off of the longest side of the triangle only if the triangle is a right triangle.  If the same number of 

Starbursts© candy or one-inch squares used to construct squares off of the shorter sides cannot 

be used to construct a square off of the longest side, the conclusion is that the triangle is not a 

right triangle. 

For example, the students identify that in a right triangle, the sum of the areas of the two 

smaller squares (9 squares + 16 squares) is the same as the larger square (25 squares).  In an 

acute triangle, the students realize that the sum of the areas of the two smaller squares (16 

squares + 25 squares) is greater than the area of the bigger square (36 squares) so there are pieces 

left over.  In an obtuse triangle, the students realize that the sum of the areas of the two smaller 

squares (9 squares + 25 squares) is less than the area of the bigger square (49 squares) so there 

are not enough pieces to fill up the area of the square off the longest side of the triangle or there 

are too many pieces in the area of the square off the longest side of the triangle.  The students 

concluded that, at the elementary school level, these observations by example justify the 

Pythagorean Theorem and its converse.  Thus, at the elementary school level, justification is 

viewed as mathematical verification rather than a formal mathematical proof. 

Middle School 

At the middle school level, the students believed that middle school students should be 

able to apply the Pythagorean Theorem to right triangles to find missing side lengths.  In regards 

to justifying or proving the Pythagorean Theorem, two of the teams used hands-on dissection 

proofs in combination with explanation and another team used President Garfield’s proof with 

geoboards in combination with an algebraic proof.  Figure 1 shows an example layout for 

Garfield’s proof of the Pythagorean Theorem using an interactive geoboard.  In the algebraic 

proof provided by the students, the side lengths of the right triangle were first represented by a, 



10 

 

b, and c, where c is the hypotenuse, and then observe that the sum of the areas of the three 

triangles equals the area of the trapezoid to get  𝑎2 + 𝑏2 = 𝑐2. 

 
 

Figure 1. President Garfield’s proof of Pythagorean Theorem represented on a geoboard. 

 

For a second activity, this time involving the converse of the Pythagorean Theorem, the 

team that used Garfield’s proof decided that middle school students should experiment with 

different triangles in order to understand the converse of the Pythagorean Theorem.  The middle 

school students would be given an obtuse, acute, and right triangle cut out of paper, a ruler, and a 

protractor.  The middle school students would then be instructed to measure the lengths of the 

sides of the triangles and find the measure of the angle between the two shortest sides of the 

triangles.  By measuring the angle between the two shortest sides of the triangle, middle school 

students would discover which type of triangles satisfied the equation 𝑎2 + 𝑏2 = 𝑐2.  The 

observation is that 𝑎2 + 𝑏2 = 𝑐2 is true for a right triangle; 𝑎2 + 𝑏2 < 𝑐2is true for an obtuse 

triangle; and 𝑎2 + 𝑏2 > 𝑐2 is true for an acute triangle.  The middle school students would be 

expected to make observations and provide a summary of their results. 

The two teams that used dissection proofs of the Pythagorean Theorem also used 

dissection to make observations about the converse of the Pythagorean Theorem.  Since both 

teams used a similar approach, only one is described.  Middle school students would be given a 
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worksheet containing dissection pieces and after cutting out the dissection pieces that form the 

areas of the squares off of legs a and b they would determine how to fit the dissection pieces in 

the square off the hypotenuse (see Figure 2).  Through this process, middle school students 

would discover that the Pythagorean Theorem holds only for right triangles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A right triangle with dissection pieces shown on the legs. 

 

 

 Next, the middle school students would try to use the same principles with acute and 

obtuse triangles.  That is, using the dissection pieces from the right triangle, they would attempt 

to fit them into the square off the longest side of the acute or obtuse triangle (see Figure 3).  Note 

that sides labeled a and b are the same for all three types of triangles. 
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Figure 3. An acute triangle and obtuse triangle with dissection pieces. 

 

To understand how to use the figures in justifying the converse of the Pythagorean 

Theorem, first, in the case of the acute triangle, the square formed from the dissection pieces is 

bigger than the square off the longest side, c.  Translating these ideas into mathematical 

expressions and comparing them means that the area of the dissection pieces can be expressed as  

𝑎2 + 𝑏2 and the area of the square off of c can be expressed as 𝑐2 so the middle school students 

could conclude that for acute triangles, 𝑎2 + 𝑏2 > 𝑐2.  For the obtuse triangle, the square formed 

from the dissection pieces is smaller than the square off the longest side, c.  Translating these 

ideas into mathematical expressions and comparing them means that middle school students 

should observe the area of the dissection pieces is 𝑎2 + 𝑏2 and the area of the square off of side c 

is 𝑐2 so it follows that for obtuse triangles,  𝑎2 + 𝑏2 < 𝑐2. 

 Visual representations were used to justify the Pythagorean Theorem and its converse at 

both the middle school level and elementary school level.  However, the main difference 

between justification or proof at the elementary school level and middle school level is that at the 

elementary school level justification was done by making observations from using specific 

a

b

c
a

b

c
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examples of squares off the sides of the triangles whereas at the middle school level justification 

was based on not assigning specific values to the side lengths of the triangles and in one case 

also providing an algebraic proof of the Pythagorean Theorem.  The use of visual verification or 

mathematical proof through algebraic methods coincide with observations made by Huang 

(2005) in which Hong Kong and Shanghai teachers used the Pythagorean Theorem to introduce 

the concept of mathematical proof.  It should be noted that the two teams using a dissection proof 

did not include any algebraic proof as did the team that used President Garfield’s proof.  Instead, 

these teams required middle school students to provide an explanation of their observations after 

working with the dissection pieces. 

High School 

The approaches to proving or justifying the Pythagorean Theorem and its converse were 

widespread at the high school level.  They varied from using a dissection proof similar to the 

ones described for the middle school level to using straightedge-and-compass constructions (for 

the converse) to using trigonometry.  As the methods varied so much, provided in the paragraphs 

that follow is a breakdown of how each group approached developing ideas appropriate for high 

school students might justify the Pythagorean Theorem and its converse. 

Group 1 

To justify the Pythagorean Theorem, group 1 decided that high school students would be 

given four congruent right triangles and then be prompted to make a square with the four 

hypotenuses of the right triangles (side c) creating the sides of the square (see Figure 3).  After 

the high school students created their square they should first explain why the figure created is 

actually a square and why the inside quadrilateral is also a square.  Then they would find the area 

of the outside square two different ways.  First the conventional way, then by adding the areas of 
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the shapes of the inside of the square.  This method uses both a visual representation with 

explanation and an algebraic proof of the Pythagorean Theorem. 

 

 
Figure 3. Square made from four congruent right triangles. 

 

 For the converse of the Pythagorean Theorem, group 1 created a worksheet with six 

triangles; two acute triangles, two obtuse triangles, and two right triangles.  Each triangle had 

side lengths given with c the longest side.  A table was to be completed with calculations of a2, 

b2, a2 + b2, c2, the angle measure between the two shortest sides, an indication of whether the 

triangle was acute, obtuse, or right, and a column to note <, >, or = in comparing a2 + b2 to c2.  In 

addition, there was a question prompting students to summarize their observations from the 

table.  The goal was for high school students to identify the relationship between c2 and a2 + b2 , 

where c is the longest side of a triangle.  The observation is that when  𝑎2 + 𝑏2 > 𝑐2, the triangle 

is acute and, when 𝑎2 + 𝑏2 < 𝑐2, the triangle is obtuse.  Thus, the triangle is a right triangle only 

when  𝑎2 + 𝑏2 = 𝑐2 . 

Group 2 

c

a

b

B
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 Group 2 decided to use trigonometry to prove the Pythagorean Theorem and its converse.  

They used the sine and cosine values of a right triangle and the fact that 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1 to 

prove the Pythagorean Theorem.  They first used the work of Zimba (2009) to show that 

𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1 from the subtraction formula for the cosine of the difference of angles.  By 

then substituting values for sine and cosine based on their right triangle definitions, the 

Pythagorean Theorem is established. 

 For the converse of the Pythagorean Theorem, group 2 constructed an acute triangle and 

an obtuse triangle using the Geometer’s Sketchpad and then used both trigonometry and algebra 

to determine that when c is the longest side of a triangle, then for an acute triangle 𝑎2 + 𝑏2 > 𝑐2, 

and for an obtuse triangle, 𝑎2 + 𝑏2 < 𝑐2.  Figure 4 shows the diagram for the acute triangle case. 

The corresponding proof is provided in figure 5. 

 

 
Figure 4. Diagram used for an acute triangle to show 𝑎2 + 𝑏2 > 𝑐2. 

 

The students noted that they can observe that  𝑎2 + 𝑏2 > 𝑐2 holds true for an acute 

triangle using the Pythagorean Theorem, but first the height, h, must be constructed and intersect 

with side a, creating perpendicular segments. The perpendicular segments create 90° angles and 

right triangles within the acute triangle.  In the new right triangle, the trigonometric identity 

a

b

c

h

xθ
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𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1 can now be used to prove 𝑎2 + 𝑏2 > 𝑐2.  The proof provided by the students 

is shown below in figure 5. 

 
Figure 5. Using the trigonometric identity 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1 to prove 𝑎2 + 𝑏2 > 𝑐2.  

 

For an obtuse triangle, the students noted that they can observe that 𝑎2 + 𝑏2 < 𝑐2 holds 

true.  Figure 6 shows the diagram for the obtuse triangle case. 

 

 
Figure 6. Diagram used for an obtuse triangle to show 𝑎2 + 𝑏2 < 𝑐2. 

 

sin2θ + cos2θ = 1

sinθ=
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c
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h2
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(a-x)2
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h2
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a2 + b2 > c2.
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To apply the Pythagorean Theorem, first side a must be extended out, creating length x, 

so that it intersects with the height, h, and thus creating a right triangle.  In the new right triangle, 

the trigonometric identity 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1 can now be used to prove 𝑎2 + 𝑏2 < 𝑐2.  The 

proof provided by the students is shown below in figure 7. 

 

Figure 7. Using the trigonometric identity 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1 to prove 𝑎2 + 𝑏2 < 𝑐2. 

 

Although these proofs were more advanced than what group 1 provided, group 2 thought 

this method might be appropriate for students in a pre-calculus course in high school.  It also 

shows a level of thinking in the proof process that high school students could achieve. 

Group 3 

 The approach by group 3 to have high school students prove the Pythagorean Theorem 

was similar to the approach by group 1.  The high school students would be given the five cut-

out pieces of the figure shown in figure 8 and asked to form a square using the pieces.  Algebra 

would then be used to calculate the area of the outside square and the sum of the areas of the five 

sin2θ + cos2θ = 1

sinθ=
h

c
          cosθ=

a+x

c

sin2θ=(
h

c
)2      cos2θ=(

(a+x)

c
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        =
h2
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                 =

(a+x)2

c2

h2

c2
 + 

(a+x)2

c2
 = 1

h2 + x2 + 2ax + a2

c2
 = 1

h2 + x2 + 2ax + a2 = c2

a2 + b2 + 2ax = c2

When we remove 2ax, we are left with 

a2 + b2 < c2.
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pieces.  Since these areas are equal to each other, then simplifying gives the desired result of 

𝑎2 + 𝑏2 = 𝑐2. 

 
Figure 8. Figure given to high school students to prove Pythagorean Theorem. 

 

To prove the converse of the Pythagorean Theorem, group 3 used the approach outlined 

in Euclid’s Elements (see, for example, Spector (2016)).  The high school students would 

construct triangles using a straightedge and compass, and then complete a formal proof.  Group 3 

then addressed the following questions, “If c is the longest side of a triangle, what relationships 

hold when comparing c2 to a2 + b2?  What type of triangles do we get?”  To answer these 

questions, the high school students would be instructed to construct using a straightedge and 

compass both an acute triangle and an obtuse triangle with side c as the longest side in each case.  

The high school students would measure the sides of the triangles and be asked to make 

observations about what relationships occurs between c2 and a2 + b2 when <C is an acute angle 

and when it is an obtuse angle.  The observation is that students should see that in the case of the 

acute triangle 𝑎2 + 𝑏2 > 𝑐2 and in the case of the obtuse triangle 𝑎2 + 𝑏2 < 𝑐2. 

The variation in approaches at the high school level to justification and proof of the 

Pythagorean Theorem and its converse may be due to the grade level the students had in mind 

c

c

c

c

a

a

a

a

b

b

b
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when developing the activities.  In the ninth grade, it is possible that students would be expected 

to use visual representation and algebraic justification similar to that expected in the eighth grade 

at outlined by CCSSI (2010).  However, as students mature in their mathematical thinking, they 

learn to formalize the proof process as was seen in the activities developed by two of the groups 

at the high school level. 

Summary 

In this study, students were asked to develop activities to justify or prove the Pythagorean 

Theorem and its converse.  The goal was to provide experiences for students to learn about proof 

and justification at the elementary school, middle school, and high school levels.  Since 

reasoning and proof are important components in learning mathematics, it should be a part of K-

12 mathematics education.  It is thus important for pre-service teachers to learn what constitutes 

proof at the various levels.  As demonstrated by the activities developed by the students in this 

study, there are multiple approaches to justification and proof.  At the elementary school level, 

the students developed hands-on activities that focused on mathematical verification of the 

Pythagorean Theorem and its converse as that was what they believed was appropriate for the 

early grades.  At the middle school level, students developed activities that focused on visual 

proofs of the Pythagorean Theorem using geoboards combined with algebraic verification or 

allowed for hands-on exploration of the Pythagorean Theorem and its converse using dissection 

proofs combined with explanation.  At the high school level, there was more variety in 

techniques used to prove the Pythagorean Theorem and its converse, which may have been due 

to the teams thinking about what might be appropriate for a freshman versus a senior student in 

high school.  The techniques varied from using a dissection proof to using straightedge-and-

compass constructions to using trigonometry.  



20 

 

Although there are no clear guidelines as to what constitutes proof at each level, pre-

service teachers should have many opportunities to explore its meaning so that they have an 

understanding of how it can be taught in the schools.  The role of proof in K-12 education is an 

important component in the development of a student’s mathematical knowledge and if K-12 

students are going to build upon their mathematical reasoning, they need more opportunities to 

do so, which in turn means that pre-service teachers should be given opportunities to explore the 

concept of proof in K-12 education. 
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